Calculus 140, section 3.5 Higher Order Derivatives

notes by Tim Pilachowski
Given a function $f(x)=x^{r}$ where r is a non-zero real number, $f^{\prime}(x)=r x^{r-1}$ [section 3.2, 3.3, 3.4]

$$
\begin{aligned}
& \frac{d}{d x}[\sin x]=\cos x, \quad \frac{d}{d x}[\cos x]=-\sin x, \quad \frac{d}{d x}\left[e^{x}\right]=e^{x}, \quad \frac{d}{d x}[\ln x]=\frac{1}{x} \quad[\text { section 3.2, 3.4] } \\
& (f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)[\operatorname{Thm} 3.4], \quad \frac{d}{d x}[c * f(x)]=c * f^{\prime}(x)[\text { Thm 3.5] } \\
& (f * g)^{\prime}(x)=f(x) * g^{\prime}(x)+g(x) * f^{\prime}(x)[\operatorname{Thm} 3.6], \quad\left(\frac{f}{g}\right)^{\prime}(x)=\frac{g(x) * f^{\prime}(x)-f(x) * g^{\prime}(x)}{[g(x)]^{2}}[\operatorname{Thm} 3.7] \\
& \frac{d}{d x} g[f(x)]=g^{\prime}[f(x)] * f^{\prime}(x) \text { [Thm 3.8] }
\end{aligned}
$$

Recall, however, that the first derivative is itself a function, which has its own domain and its own graph. Since it is a function, it also has its own derivative. Given a function f, we can calculate the first derivative f^{\prime} or $\frac{d y}{d x}$. We can then calculate the derivative of f^{\prime}, i.e. the second derivative of f, symbolically $f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}$.

Important note: Just like $\frac{d y}{d x}$ is not a fraction, but is a notation for the first derivative, $\frac{d^{2} y}{d x^{2}}$ is also not a fraction but a notation. There is no multiplication involved! Rather, you need to interpret it this way:

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right) \text { which means "the derivative of } \frac{d y}{d x} " \text { ", the derivative of a derivative. }
$$

In a similar fashion, we can find higher-order derivatives.

$$
\begin{gathered}
\frac{d}{d x}[f(x)]=f^{\prime}(x)=\frac{d y}{d x}, \frac{d}{d x}\left[f^{\prime}(x)\right]=f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}, \frac{d}{d x}\left[f^{\prime \prime}(x)\right]=f^{(3)}(x)=\frac{d^{3} y}{d x^{3}}, \frac{d}{d x}\left[f^{(3)}\right]=f^{(4)}(x)=\frac{d^{4} y}{d x^{4}} \\
\frac{d}{d x}\left[f^{(n-1)}\right]=f^{(n)}(x)=\frac{d^{n} y}{d x^{n}}
\end{gathered}
$$

Example A: Given $f(x)=x^{3}-8 x+2$, find all higher derivatives of f.

Example B: Given $f(x)=\sqrt{25-x^{2}}$, find the second derivative. answer: $\frac{-25}{\left(25-x^{2}\right)^{3 / 2}}$

Example C: Given $f(x)=\frac{3 x+1}{x-2}$, find $f(x)=\frac{d^{3} y}{d x^{3}}$. answer: $\frac{-42}{(x-2)^{4}}$

In Examples B and C, we needed the Quotient Rule. Your text, in Example 6, uses the Product Rule, to find the first three derivatives of $y=x \sin x$.

The text also, in Example 5, demonstrates that for functions $f(x)=e^{c x}$, the $n^{\text {th }}$ derivative is $f^{(n)}(x)=c^{n} e^{c x}$.
Example D: Given $f(x)=\ln x$, find a formula for the $n^{\text {th }}$ derivative of f for $n \geq 1$. answer: $(-1)^{n-1}[(n-1)!] x^{-n}$

We have already, in earlier sections, determined that velocity is the first derivative of a position function. But velocity is not always constant. Rather, it changes. Sometimes we go slower; sometimes we speed up. The rate of change of velocity is called acceleration.
The derivative of velocity is acceleration.
The derivative of [the derivative of position] is acceleration.
The second derivative of a position function is acceleration.
(Read through the text's explanation and example 7.)
Example E: The three graphs below (in no particular order) are graphs of $h(t)$, the height of a toy helicopter above the ground, $v(t)$ [the velocity of the helicopter], and $a(t)$ [the acceleration of the helicopter]. Use your knowledge of first and second derivatives to determine which graph is of which function. Justify your answer.

